# catenoid

*Wikipedia foundation.*

### Look at other dictionaries:

**Catenoid**— A catenoid is a three dimensional shape made by rotating a catenary curve around the x axis. Not counting the plane, it is the first minimal surface to be discovered. It was found and proved to be minimal by Leonhard Euler in 1744 [L. Euler,… … Wikipedia**catenoid**— /kat n oyd /, n. Geom. the surface generated by rotating a catenary about its axis of symmetry. [1875 80; < L caten(a) a chain + OID] * * * … Universalium**catenoid**— 1. Like a chain, such as a chain of fungus spores or a colony of protozoa in which the individuals are joined end to end. SYN: catenulate. 2. Surface of net zero curvature generated by the rotation of a catenary (curve of repose of a suspended… … Medical dictionary**catenoid**— adj. linked together … English contemporary dictionary**catenoid**— cat·e·noid … English syllables**catenoid**— I. ˈ ̷ ̷əˌnȯid, ˈ ̷ ̷ənˌȯid noun ( s) Etymology: Latin catena + English oid : the surface described by the rotation of a catenary about its axis II. adjective Etymology … Useful english dictionary**Helicoid**— A helicoid with α=1, 1≤ρ≤1 and π≤θ≤π. The helicoid, after the plane and the catenoid, is the third minimal surface to be known. It was first discovered by Jean Baptiste Meusnier in 1776. Its name derives from its similarity to the helix: for… … Wikipedia**Theorema Egregium**— Gauss s Theorema Egregium (Latin: Remarkable Theorem ) is a foundational result in differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces. Informally, the theorem says that the Gaussian curvature of a surface … Wikipedia**Catenary**— This article is about the mathematical curve. For other uses, see Catenary (disambiguation). Chainette redirects here. For the wine grape also known as Chainette, see Cinsaut. A hanging chain forms a catenary … Wikipedia**catenary**— /kat n er ee/; esp. Brit. /keuh tee neuh ree/, n., pl. catenaries, adj. n. 1. Math. the curve assumed approximately by a heavy uniform cord or chain hanging freely from two points not in the same vertical line. Equation: y = k cosh(x/k). 2. (in… … Universalium