countable additivity

The following property of a measure: that the measure of a countable union of disjoint sets is equal to the sum of their measures.
Syn: σ-additivity

Wikipedia foundation.

Look at other dictionaries:

  • σ-additivity — noun countable additivity …   Wiktionary

  • Measure (mathematics) — Informally, a measure has the property of being monotone in the sense that if A is a subset of B, the measure of A is less than or equal to the measure of B. Furthermore, the measure of the empty set is required to be 0. In mathematical analysis …   Wikipedia

  • probability theory — Math., Statistics. the theory of analyzing and making statements concerning the probability of the occurrence of uncertain events. Cf. probability (def. 4). [1830 40] * * * Branch of mathematics that deals with analysis of random events.… …   Universalium

  • Non-measurable set — This page gives a general overview of the concept of non measurable sets. For a precise definition of measure, see Measure (mathematics). For various constructions of non measurable sets, see Vitali set, Hausdorff paradox, and Banach–Tarski… …   Wikipedia

  • Probability measure — In some cases, statistical physics uses probability measures, but not all measures it uses are probability measures.[1][2] In mathematics, a probability measure is a real valued function defined on a set …   Wikipedia

  • Vitali set — In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measurable. The Vitali theorem is the existence theorem that there are such sets. It is a non constructive result. The naming is for Giuseppe… …   Wikipedia

  • Lebesgue integration — In mathematics, the integral of a non negative function can be regarded in the simplest case as the area between the graph of that function and the x axis. Lebesgue integration is a mathematical construction that extends the integral to a larger… …   Wikipedia

  • Outer measure — In mathematics, in particular in measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. A general theory… …   Wikipedia

  • Bayesian probability — Bayesian statistics Theory Bayesian probability Probability interpretations Bayes theorem Bayes rule · Bayes factor Bayesian inference Bayesian network Prior · Posterior · Likelihood …   Wikipedia

  • Carathéodory's extension theorem — See also Carathéodory s theorem for other meanings. In measure theory, Carathéodory s extension theorem proves that for a given set Ω, you can always extend a sigma; finite measure defined on R to the sigma; algebra generated by R , where R is a… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.